데이터지능 S2E10 이정윤님 (2) – 캐글 마스터의 커리어 이야기

오늘은 지난번에 소개한 캐글 마스터 이정윤님의 스타트업과 대기업을 넘나드는 커리어 이야기를 들어보도록 하겠습니다.

1:30 대학원 & 첫 직장 (컨설팅) 경험
11:15 LA에 정착하신 이유
16:15 스타트업 (컨버전 로직) 경험
28:00 마이크로소프트에서의 경험
38:30 우버에서의 경험
49:30 데이터 사이언티스트가 코드에 신경을 써야 하는 이유
61:00 우버에서의 데이터 사이언스 오픈소스 패키지 만드신 경험
68:00 넷플릭스에서의 경험
76:00 넷플릭스의 회사/개발팀
85:30 원격근무에 대한 생각

마지막으로, 정윤님께서 청취자분께 전하고 싶으신 말씀을 글로 남겨주셔서 여기 공유합니다:

DS/ML 분야에서 경력을 개발하고자 하는 분들께 드리고 싶은 말은 회사나 직급보다 배움과 경험에 집중하시라고 말씀드리고 싶습니다. 물론 좋은 회사에 좋은 직급으로 일을 하시면서 많이 배우고 다양한 경험을 쌓을 수 있으면 좋겠지만, 여러 사정상 그렇지 못하는 분들이 더 많겠지요.

DS/ML 분야는 다행히도 꼭 핫한 대기업의 연구개발 직군이 아니더라도 많은 기회들이 있습니다. 다양한 인더스트리에 걸쳐 많은 회사들이 DS/ML 분야의 인력을 필요로 하고 있구요. 또한 회사 밖에서도 캐글과 같은 대회에 참가하거나 오픈소스에 기여하면서 전문성을 키우고 검증 받을 수 있는 기회들이 있습니다.

이렇게 꾸준히 다양한 문제와 방법론들을 배우고 경험하며 실력을 키우다보면 어느 순간 전문가가 되어있는 자신을 발견할 수 있으실 겁니다.

관련 링크

데이터지능 S2E9 이정윤님 (1) – 캐글 마스터 & KDD컵 우승까지

안녕하세요, 이번에는 캐글(Kaggle) 마스터 및 2015년 KDD컵 우승에 빛나는 데이터 사이언스 컴피티션의 대가 이정윤님을 모셨습니다. 정윤님은 또한 스타트업 & 대기업 (우버/넷플릭스) 에서 데이터 사이언스와 머신러닝을 넘나드는 다양한 업무를 수행하셨고 5남매의 아버지이시기도 한데요, 오늘은 정윤님과 주로 캐글을 중심으로한 DS 컴피티션 이야기를 나누어 보았습니다.

오디오 목차
4:20 DS 컴피티션 참석하계된 계기
12:30 컴피티션에 계속 참석하는 이유
15:00 가장 기억에 남는 컴피티션 (2015년 KDD컵)
22:30 컴피티션 우승의 비법은? (2015년 / 그리고 그 이후)
33:30 컴피티션 경험이 업무에 적용되는 부분? 적용되지 않는 부분?
41:15 컴피티션이 보여주는 DS / ML 트랜드
49:00 캐글 경험이 취업에 주는 도움?
51:00 캐글을 시작하는 방법?
63:00 향후 계획 & 컴피티션의 미래

관련 링크

광고

저는 올해 4월부터 네이버 서치에서 근무를 하고 있고요, 저와 함께 한국/미국에서 네이버 검색 및 추천시스템의 사용자 만족도 및 결과의 공정성 평가 및 개선을 위해 일하실 데이터 사이언티스트 및 엔지니어를 모시고 있습니다. 관심있으신 분께서는 지금 진행 중인 네이버 월간채용에 지원하시거나 (Search CIC밑에 Data / Back-end), 저에게 직접 메일을 주시면 (jin.y.kim at navercorp dot com) 됩니다.

네이버 검색의 Data & Analytics (DnA) Team에 함께하실 분들을 찾습니다.

제가 최근 네이버 검색 부문의 Data Science 담당 책임리더로 조인하게 되었습니다. (저희 팀은 한국/미국 양쪽에서 채용 중이며, 저는 주로 미국에서 일합니다.) 네이버의 다양한 검색 및 추천 서비스가 우리 사회의 지식 정보 생태계를 발전시키는데 일익을 담당하고자 합니다. 한국 혹은 미국에서 저와 함께 일하실 분들은 아래 세부 사항을 보시고 jin dot y dot kim at navercorp dot com으로 연락주시기 바랍니다! 한국의 경력직 월간 채용 공고 [1] [2], 혹은 영문 채용 홈페이지에 현재 채용중인 포지션에 대한 좀더 자세한 정보 및 지원 방법을 확인하실 수 있습니다.

DnA Mission 

네이버 서치의 Data & Analytics (DnA) 팀에서는 네이버 및 관련 서비스의 검색 및 추천 시스템 개발 과정에서 요구되는 다양한 분석 및 의사결정을 지원하기 위한 데이터 및 도구를 개발하고, 조직 전체가 따를 수 있는 품질 평가 프로세스 및 가이드라인을 제공하며, 전략적으로 중요한 지표 설정이나 분석 업무를 직접 수행하는 역할을 합니다. 또한 사용자 로그 데이터에서 최대한의 가치를 뽑아낼 수 있는 모델링 기법을 연구하고 이를 검색 랭킹 및 평가 업무에 적용합니다  

검색 및 추천시스템을 포함하는 데이터 사이언스 각 분야의 기술은 끊임없이 진화하고 있으며, 이런 변화의 흐름을 이해하고 선도하는 것이 테크 기업 및 종사자의 경쟁력 및 장기적인 성패에 결정적입니다. 이를 위하여 DnA팀에서는 조직 구성원들의 배움과 성장을 지원하고기술적인 배움과 성과를 사/내외에 다양한 형태로 공유하고, 이를 통해 관련 조직 및 커뮤니티의 성장에 기여함과 동시에 데이터 사이언스 분야에서의 기술적인 리더십을 공고히 하려고 합니다. 

DnA Culture 

팀의 미션을 실현하는 것은 결국 구성원들의 노력이고이를 뒷받침하는 것이 조직 문화입니다. 이번에 DnA팀을 만들면서 저희는 구성원들이 즐겁게 일하면서 지속적으로 성과를 내는데 필요한 요소만을 남기고, 불필요한 요소는 최대한 배제함으로써 업계를 선도하는 새로운 조직 문화를 만들어 가고자 합니다. 

도구와 프로세스에 투자 

조직이 전문성을 쌓고 이를 통한 성과를 극대화하기 위해서는 반복되는 업무를 자동화할 수 있는 최적의 도구를 도입하거나 개발하고사람이 관여하는 부분에 있어서는 최적의 프로세스를 정의하는 것이 필요합니다. DnA팀은 내부적으로 좋은 도구와 프로세스에 투자하고이에 공헌하는 구성원을 적절히 보상하고, 이런 노력의 결과물이 팀 내외에 모두 도움을 줄 수 있도록 적극적으로 공유합니다. 

구성원과 함께 성장하는 조직 

테크 기업이 처한 비즈니스 환경 및 기술 생태계는 끊임없이 진화하고 있으며, 이런 의미에서 저희는 끊임없이 구성원이 배우고 성장할 수 있는 문화를 만들고자 합니다. 구체적인 방안으로 각 구성원이 각자의 전문 분야에 부합하는 프로젝트를 수행하여 조직의 성과에 기여할 수 있도록 지원하고, 그 결과를 필요에 따라 사내 혹은 기술 커뮤니티에 공유하며 같이 성장하려고 합니다. 

유연한 근무 형태 

이번 코로나 사태를 지나면서 기업들은 구성원의 업무와 개인적인 생활이 최대한 조화를 이룰 수 있는 근무 형태가 회사에도 도움이 된다는 점을 배웠습니다. 따라서 저희는 지역 및 근무 형태를 가리지 않고 좋은 인재를 채용하려고 합니다. 모든 구성원들은 적응 기간을 거친 이후에는 부분 혹은 완전 원격 근무를 선택할 수 있게 하려고 합니다. (현재 사내 협의 중) 

공유 기반의 투명한 문화 

이런 장점에도 불구하고 원격 근무는 자칫 개인과 조직간에 보이지 않는 장벽을 만들고 효율적인 의사소통 및 협업을 어렵게 할 수도 있습니다. 이런 부작용을 최소화하기 위해 DnA팀에서는 프로젝트 진행 상황 등 조직 내 대부분의 활동을 투명하게 공유하고, 다양한 협업 툴을 적극 활용하여 구성원들이 서로 배운 것을 공유하고 신뢰하며 성과를 낼 수 있는 문화를 만들고자 합니다.  

데이터지능 S2E8: 네이버 Clova AI 하정우 / 성낙호님

안녕하세요, 데이터지능 청취자 여러분. 오늘은 대한민국 AI의 세계화를 위해 불철주야 노력하고 계시는 네이버 클로바 AI의 하정우 / 성낙호님을 모셨습니다.

3년전에 비해 AI에 대한 관심도 더 커졌고, 그에따라 그 부작용에 대한 우려도 생겨나고 있는 상황인데요, 이를 포함한 AI 전반의 다양한 주제에 대해 말씀을 나누었습니다.

클로바 AI에 관심을 가지시는 분께서는 채용 홈페이지를 참조하시거나 메일 clova-jobs@navercorp.com / naverai@navercorp.com로 연락을 주시면 된다고 합니다.

00:30 소개 및 지난 3년간의 소회
13:00 그동안 다양한 AI 디바이스 개발을 통해 배운 점
20:45 클로바가 생각하는 AI 디바이스의 미래는? (힌트: pre-training & GPT3)
26:00 클로바의 비즈니스 AI 접근 방법은?
29:40 코로나 극복에 일조한 클로바 케어콜 구축경험
34:30 최근에 급속도로 발전한 AI가 인간을 대체할 수 있을까?
40:15 윤리적인 AI를 만들기 위한 클로바의 노력은?
49:20 클로바 AI 리서치의 중점 및 인재상?
58:00 클로징: 클로바 지원자를 위한 꿀팁

(오늘부터 데이터지능 방송의 새 에피소드 및 홈페이지의 기타 포스팅을 글을 메일로도 서비스합니다. 혹시 메일을 원하시지 않는 분께서는 글미에 unsubscribe 링크를 찾으실 수 있습니다.)

인공지능 시대의 빛과 그늘, 그리고 데이터 리터러시

요새 ‘이루다’ 등을 비롯한 인공지능의 윤리 문제가 많은 관심을 받고 있는데요, 최근에 숙명여대를 비롯한 대학생들의 연합 데이터 컨퍼런스인 SM-Pair에서 ‘인공지능 시대의 빛과 그늘, 그리고 데이터 리터러시’를 주제로 강의를 할 기회가 있었습니다. 팟캐스트에서 발표 내용을, 그리고 아래 유튜브에서 발표 영상을 보실 수 있습니다.

1:45 인공지능에 대한 뜨거운 관심 (특히 한국에서)
3:30 최근 불거지는 인공지능의 일탈 (정치적 극단화 / 이루다 / AI 면접)
8:00 인공지능의 본질에서 찾는 원인과 해법
12:30 왜 인공지능의 윤리가 중요한 문제인가?
16:30 인공지능의 공정성을 어떻게 정의할 것인가?
27:30 인공지능의 공정성을 높이는 기술적인 해법 (입력 데이터 / 학습 모델 / 결과물 평가)
39:30 인공지능의 공정성을 높이는 비기술적인 해법 (조직 및 개인 관점)
44:15 전공자/비전공자 입장에서 인공지능 시대를 준비하는 방법
48:15 인공지능 공부를 위한 효율적인 방법

데이터지능 S2E7: 애플과 나이키는 어떻게 인공지능으로 미래를 만들어가는가?

데이터 및 인공지능 기술이 오프라인 세상에 영향을 끼치는 대표적인 분야가 전자상거래인데요, 이들 중 나이키는 전통적인 기업가운데 인공지능에 기반한 전자상거래 활용의 선두주자로 잘 알려져 있습니다. 오늘은 애플에서 전자상거래를 담당하는 머신러닝 팀을 만드셨고, 최근까지 나이키에서 AI팀의 디렉터로 일하셨으며, 현재 아마존에서 광고 시스템을 담당하는 머신러닝 팀을 이끌고 계신 정현준님을 모셨습니다. (현재 아마존 실리콘밸리 오피스에서 채용중이시며, 자세한 문의는 링크드인으로 부탁드립니다.)

https://www.linkedin.com/in/hyunvincero/

청취자 여러분들 새해 복 많이 받으시고요! 그리고 새해에는 아래 유튜브 채널에서도 좀더 자주 찾아뵐 생각입니다. (미리 구독해주셔도 좋고요:)

https://www.youtube.com/user/lifidea

3:30 애플에서 머신러닝 초창기에 경험
18:00 애플에서 머신러닝 팀을 만든 경험
25:30 애플에서 나이키로의 이직 & 적응 경험
30:00 나이키가 코로나에 적응하는 과정을 도운 경험
34:00 나이키가 아마존과 파트너십을 끝낸 과정
42:00 검색/추천 시스템에서 고객의 장기적인 가치를 최적화하는 방법
52:00 전자상거래를 위한 검색/추천 시스템을 개발하는데 고려할 사항
56:00 여러가지 목표를 동시에 만족시키는 검색/추천 모델을 개발하기
62:00 본인이 경험한 기술 기업과 비기술 기업의 차이
71:00 꾸준히 기술 트렌드를 따라잡는 개인적인 방법
78:00 머신러닝 / 전자상거래 분야의 커리어에 대한 생각
86:00 아마존 광고팀에서의 포부 & 인재상
88:00 클로징

데이터 지능 S2E6: 의료 인공지능 & 디지털 헬스편 (Harmonize Health 한기용님 / Alpha Health 김병학님)

데이터지능 팟캐스트의 김진영입니다. 2020년 모든 분들의 머리속을 채운 키워드가 있다면 건강일텐데요, 데이터 및 인공지능 기술과 헬스케어의 만나는 ‘디지털 헬스’라는 분야가 있습니다. 오늘은 디지털 헬스 스타트업에서 각각 데이터 / 머신러닝 책임자로 일하고 계시는 한기용 / 김병학님을 모셨습니다.

청취자 분들 건강 유의하시고 즐거운 연말연시 되시길 바라겠습니다!

목차
15:00 디지털 헬스에 관심을 갖게된 계기
26:00 디지털 헬스 개념잡기 & 주요 플레이어와 문제들
48:30 디지털 헬스 관련 데이터 및 인공지능 기술들
53:40 디지털 헬스의 이상과 현실 (과연 인공지능은 의사를 대체할 수 있을까?)
78:00 의료에 적용가능한 인공지능의 조건은?
96:30 디지털 헬스 입문자에게 조언한다면? 현재 두 분의 채용분야 및 인재상은?

관련 링크
한기용님: https://www.linkedin.com/in/keeyonghan/
Harmonize Health Careers: https://www.harmonize.health/careers

김병학님: https://hakkim.tech/
Alpha Health Careers: https://jobs.lever.co/alphahealth.com

p.s. 디지털 헬스에 관심있는 분들께서는 최윤섭 박사님의 홈페이지 및 저서도 꼭 참조하세요http://www.yoonsupchoi.com/

데이터지능 S2E5: 추천시스템편 (네이버 최재호님)

안녕하세요, 애청자 여러분. 다사다난한 2020년은 잘 보내고 계신가요? 미국은 코로나가 더 심해서 저도 거의 집에서 2020년을 보냈는데요, 최근에 추천시스템 컨퍼런스에 (RecSys’20) 참석하면서 공부를 많이 했고, 이참에 네이버에서 추천시스템 팀을 이끌고 계시는 최재호 책임리더님을 모시게 되었습니다. 지난 20년간 네이버에서 일하시면서 얻으신 검색 및 추천시스템 관련한 다양한 실무 경험을 가감없이 들려주시는 최재호님과의 대화에 여러분을 초대합니다. 관심있으신 분께서는 아래 채용 링크도 꼭 확인하세요.

AI 글로벌 추천 모델링 엔지니어 신입/경력 모집:
https://bityl.co/4HGV

최재호님 DeView 발표:
https://deview.kr/2017/schedule/180

1:45 자기소개 및 처음 시작하게되신 계기는?
12:30 추천시스템의 기본적인 구조와 원리는 무엇인가요?
17:15 딥러닝이 추천시스템에는 어떻게 활용되나요?
21:15 실무에서 추천시스템을 개발하는 어려움이 있다면?
26:15 추천 알고리즘의 성능 개선 및 평가 프로세스는?
31:15 추천시스템이 사용자에 미치는 부작용을 (필터 버블) 최소화하기 위한 노력은?
35:00 추천 대상이 추천 알고리즘에 미치는 영향은? 뉴스의 추천과 동영상의 추천 방법은 어떤 차이가 있나요?
38:15 신규 서비스에 추천 시스템을 적용한 경우에는 어떤 어려움이 있나요?
41:45 최근 온라인으로 열렸던 RecSys’20 컨퍼런스에서 인상깊으셨던 부분은?
53:30 추천시스템 분야에 대해서 공부 하고자 하시는 분들을 위한 조언을 한다면?
63:15 네이버에서 추천시스템 일을 하고 싶은 분들께 준비 방법을 조언한다면?
68:15 추천시스템의 미래, 그리고 그 속에서 내가 하고 싶은 역할은?

데이터지능 S2E4: 데이터 저널리즘편 (SBS ‘마부작침’ 팀)

안녕하세요, 데이터 지능 팟캐스트의 김진영입니다. 그동안 데이터에 관한 다양한 주제를 다루었는데요, 매일 접하는 언론 보도만큼 데이터를 일상적으로 접하는 수단도 드물지 않나 합니다. 그런데 최근에는 ‘데이터 저널리즘’이라는 용어 및 전문 매체가가 생겼을 만큼 언론에서도 데이터가 강조되는 추세인데요, 오늘은 SBS에서 데이터 저널리즘 관련 일을 하시는 ‘마부작침’ 팀을 모셨습니다. (배여운/안혜민/한창진님 다시한번 감사드립니다!)

마부작침 팀 홈페이지:
https://news.sbs.co.kr/news/newsPlusList.do?themeId=10000000114
마부작침 뉴스레터 구독하기:
http://news.sbs.co.kr/news/mabuMain.do

그리고 지난번에 말씀드린 ‘실전 머신러닝’ 실리콘밸리 부트캠프가 현재 3월 21일에 시작하는 2기를 모집하고 있습니다.

부트캠프 등록 페이지:
https://growth.dsschool.co.kr/hackerdojo/
부트캠프 소개글:
https://brunch.co.kr/@lifidea/39

마지막으로 제가 1월에 스탠포드에서 열렸던 학술 세미나에서 머신러닝, 특히 검색/추천 결과의 공정성 대한 발표를 하였는데요, 발표자료와 영상을 제 유튜브 채널에 올렸으니 역시 많은 시청 바랍니다.
데이터지능 유튜브 채널:
https://www.youtube.com/user/lifidea/

데이터지능 S2E3: 테리와 진영의 수다

이번에는 ArtLab을 창업하시고 머신러닝과  뷰티산업의 접점에서 열심히 연구개발중이신 엄태웅(Terry)님을 오랜만에 모셨습니다. 이번 방송에서는 특정한 주제에 집중하기 보다 사업을 시작하신 테리님의 각오, 그리고 뷰티산업에 머신러닝을 적용하는 과정에서 겪는 여러가지 기술적인 이슈와 해결책에 등을 중심으로 폭넓게 이야기를 나누었습니다.

p.s. 대학원을 다니는 분, 혹은 생각중인 분이시라면 테리님께서 참여하신 책 ‘대학원생때 알았더라면 좋았을 것들’ 책도 꼭 읽어보세요. http://gradschoolstory.net 에서 자세한 내용을 보실 수 있습니다.

p.s. 그리고 제가 데이터 교육 프로그램을 준비하고 있다고 몇차래 말씀드렸는데요. 제가 2월말에 실리콘밸리에서 데이터 부트캠프 전문기관인 DSSchool과 함께 ‘실전 머신러닝’을 주제로 부트캠프를 진행합니다.